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Abstract: With growing interest in estimating true ability in contemporary learning, the 
demand for personalized learning and Web-based learning environments has become 
increasingly important. This paper develops a statistical and interpretable method of 
estimating ability. This method captures the succession of learning over time and provides 
an explainable interpretation of a statistical measurement, based on Item Response Theory 
and the quantiles of acquisition distributions. The results from the simulation and empirical 
study demonstrate that the estimated abilities can successfully recognize the actual abilities 
of students. The correlation values between the estimated abilities and the post-test score, 
which incorporate this testing history, are higher than values that only consider test 
responses at the time of testing. Furthermore, the pre-test and post-test administered to the 
experimental group show significant student improvement. These results suggest that this 
method serves as a successful alternative ability estimation and provides a better 
understanding of student competence. 
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1. Introduction 

Recently, theories on learning have focused increasing attention on understanding and 
measurement student ability. Vygotsky [12] states that a learner’s ability in the Zone of 
Proximal Development (ZPD)—the difference between a learner’s actual ability and his or 
her potential development—can progress well with external help. Instructional scaffolding 
[11], closely related to the concept of ZPD, suggests that an appropriate support during the 
learning process helps learners achieve their stated goals. Effective instructional support 
requires identifying a student’s prior knowledge, tailoring an aid to meet their initial needs, 
and then removing this aid when he or she acquires sufficient knowledge. 

Nowadays, estimations of ability offer extensive applications within e-learning 
systems in various domains. For example, Chen et al. [4] considered a learner’s ability for 
recommending personalized learning paths in a Web-based programming learning system, 
while Chen and Chung [3] analyzed students’ understanding by suggesting English 
vocabulary on mobile devices. Similarly, within Computerized Adaptive Testing (CAT), 
Barla et al. [1] calculated an examinee's ability to select suitable questions. All of these 
studies used Item Response Theory (IRT) to estimate a student’s ability, and their results 
demonstrated improved student performance.  

Item Response Theory is a modern theory of testing that examines the relationship 
between an examinee’s responses and items related to abilities measured by the items in the 
test. Three well-known ability estimations proposed by IRT are maximum likelihood 
estimation, maximum a posteriori and expected a posteriori [6].  Examples of this research 
include [1], where researchers used expected a posteriori to score each examinee’s ability at 
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each time of a test. However, IRT has some disadvantages. First, every exercise performed 
by a student is recorded in most of the web-based learning environments listed above; 
however, the ability estimations of IRT only consider test responses at the time of testing, 
rather than incorporating testing history. Moreover, the interpretation of the result of 
estimating an examinee’s ability is often defined in terms of the acquisition of a large 
portion of knowledge of the specific ability itself—through a test. Unfortunately, this 
definition is qualitative rather than quantitative.  

In response to these issues, this paper proposes a statistical method and a novel 
interpretation of estimating ability with inherent randomness in the acquisition process. We 
conduct a simulation study to investigate the property of the proposed approach and an 
empirical study to evaluate practical performance. Our simulation results demonstrate the 
convergence between an examinee’s current grade and his or her actual ability. We also 
implement this method on a Web-based learning environment. The empirical results find a 
strong correlation between the estimated ability and the post-test score that incorporates this 
testing record, and this correlation is higher than correlations between ability and values that 
only examine test responses at the time of testing. Moreover, the pre-test and post-test 
administered to the experimental group demonstrate significant student improvement.  

The remainder of this paper is organized as follows. In Section 2, we present the 
proposed ability estimation. Section 3 reports a simulation and Section 4 contains the 
empirical procedure and results. Finally, Section 5 summarizes our conclusions. 

2. Method 

We propose the following interpretation of the quantitative definition: an examinee is said to 
have ability  if s percent of items in a test T = (t1, . . . ,tm)  have been correctly answered 
each by r percent of the population. 

We first consider that each item ti in a test T has been correctly answered by r percent 
of the population. In general, there is a specific knowledge behind each tested item ti. The 
level of the specific knowledge represents that most people have acquired knowledge of ti. 
Most people understand some knowledge at an early age, whereas some understand this 
knowledge later in life. Here, we precisely denote the level the specific knowledge 
represents as the age at which r percent of the population has acquired knowledge of ti, 
where age can refer to school grades or lifetime. When given a knowledge ti and a 
population, the probability distribution of knowledge acquisition pt( ) can be calculated. Let 
the quantile function qt of the cumulative distribution function correspond to the acquisition 
distribution pt. In other words, qt(r) represents the age at which r percent of the population 
has acquired knowledge of t. This assumes a normal distribution,  

1( ) ( )t t tq r rμ σ−= + Φ  (1) 
where tμ and tσ represent the mean and standard deviation of the distribution pt, and 

1( )r−Φ is a quantile function representing the probability of exactly r to fall inside the interval 
of the distribution. When an examinee correctly responds to the item ti, the examinee’s 
ability is regarded as the age or grade level, etc. To investigate the distribution of the grade 
level of a test T, we collect the grade level values generated from each quantile function qt(r)
as the distribution of knowledge acquisition within a single test fQ.  

In practice, this is time consuming and costly for each item ti known in advance by the 
distribution pt. Fortunately, under Item Response Theory [6], a response of an examinee to 
an item is modeled by a mathematical item response function, known as the item 
characteristic curve. The item characteristic curve is a mathematical family model that 
describes the probability of a correct response between an examinee’s ability and the item 
parameters. These models employ one or more parameters, such as an item difficulty 
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parameter and an item discrimination parameter, to define a particular cumulative form. 
When given the item parameters, the grade level at which r percent of the population 
correctly responds to item t can be inferred. Take one-parameter logistic model as an 
example,  

( ) ln( )
1t

rq r b
r

= +
−

 (2) 

where variable b as item difficulty. 
Estimating an examinee’s ability through a test relies on the test responses of the test. 

We consider a percentage of correct responses in a test as variable s and define the sth 
quantile of the distribution of knowledge acquisition in a test fQ as the examinee’s ability. 
The distribution of the sth quantile of fQ, where s percent of items in a test have been 
correctly answered by r percent of the population, can be performed using a standard 
formula for normal approximation of order statistics [5]:  

1
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Q Q
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−
−

− (3)

where FQ is the cumulative distribution function and m is the number of items in a test. This 
result is more certain of the estimated grade level assigned to a large sample item size. In 
cases where an examinee correctly answered all items or no item, a smooth constant c is 
used (c=0.01 in this study). 

When given an examinee’s responses in a test, the current examinee’s ability t can be 
described by the distribution (3) in which r percent of the population correctly answer s
percent of items. We also consider an examinee’s history record, and employ Exponential 
Moving Average (EMA) [2] to combine this history with the current ability, transformed by 
the following formula:  

1(1 )t t tability abilityα θ α −= × + − ×  (4) 
where t is the current ability in time t obtained from the mean of the equation (3), abilityt-1
is the past estimated ability in the time t-1 as history records, and abilityt is the final 
estimated ability in time t after the combination of the current ability and the past estimated 
ability with EMA. Additionally,  =2/(n+1) is a smoothing constant represented as an 
exponential weight, and n represents the period as the length of the moving window. 

3. Simulation  

3.1 Settings 

To understand the performance of the proposed method, we conducted a simulation. 
According to a one-parameter logistic model in Item Response Theory [6], the probability 
of correct response is 0.5 when an item difficulty is equal to an examinee’s ability. In the 
simulation, we referred to this probability for setting the variable r. Moreover, the item 
response model also provides information in the estimation of the variable s. We used a 
one-parameter logistic model to predict the probability of a correct response when given the 
ability and an item, and then conditionally randomly sampled the variable s.  

In each simulation, ten items were generated according to an examinee’s ability at the 
time. The distribution of difficulty of these items acts as a normal distribution. For example, 
given an examinee’s ability =3, the difficulties of a test are {2, 2, 3, 3, 3, 3, 3, 3, 4, 4}. 
Ability and difficulty in this study range from one to six, corresponding to the school grades. 
In practice, an examinee’s school grade is considered as their initial ability, and the ability is 
updated by responses in each test. Thus, the simulation starts with any grade ranging from 
one to six in order to simulate different grade students with various abilities, and then 
terminates 100 iterations after the convergence point. We found the convergence point and 
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then counted the Root Mean Square Error (RMSE) during the 100 iterations. The definition 
of the convergence point is determined by computing the difference between the estimated 
ability and the ground truth, and the difference value is continuously four times smaller than 
a threshold (thd = 0.25 in the simulation).   Each simulation was processed 1000 times. 
RMSE is defined as: 

21 ˆ( )i i
i

RMSE
k

θ θ= −  (5) 

where  is the actual ability as the ground truth, θ̂  is the estimated ability, k is the number of 
the iterations. Here, k=1000. This metric represents the average distance between the 
ground truth and the generated results. The smaller RMSE value indicates that the estimated 
ability is close to the ground truth. In addition, we also discuss the parameter  in equation 
(4). The parameter is presented in terms of n time periods and represents the weight of the 
observation at the present time. The variable n was set from one to twelve. 

3.2 Results 

Table 1 shows the average convergence points in the number of variable n of parameter  in 
equation (4) over the degree of difference between the estimated ability and ground truth, 
and the results of RMSE during the 100 iterations after the convergence points. It is clear 
that the proposed method can successfully estimate abilities in the finite iterations. 
Specifically, an examinee’s ability can be estimated more precisely when he or she 
continues to have more tests.  Furthermore, the error distances between the estimated 
abilities and the ground truths are low enough to be acceptable after convergence. That is, an 
examinee’s ability can be steadily measured during a long-term observation. 

The parameter  =2/(n+1) in the equation (4) is an exponential weight of the current 
ability, and n represents the number of time periods, such as times or days, taken into 
consideration. When n=1, it represents that an examinee’s ability only considers the current 
estimated ability without the history record. In Table 1, the values in screentone present that 
the average convergence points are fewer than the points generated from n=1. This result 
shows that the estimated abilities are quickly found and the error distances decrease when 
considering the history record. In particular, it is apparent when the initial grade is equal to 
the ground truth. When n is small (e.g. n=2,  =2/3; n=3,  =1/2), the estimated ability is 
mainly decided by the current ability. The convergence points are smallest and the RMSE is 
slightly smaller than one generated from n=1. In contrast, when n increases, the estimated 
ability is principally composed of abilities from the past to now. If an examinee’s initial 
ability is not close to his or her actual ability, it takes more information to accurately 
estimate. Although it takes time, the RMSE is clearly shrinking. 

Table 1. The results of convergence point and RMSE (each row represents the degree of 
difference between the initial ability and the actual ability, and each column represents the 

number of time periods considered by the exponential weight of the current ability) 
d        n 1 2 3 4 5 6 7 8 9 10 11 12 

0 20.61 13.88 11.72 11.53 10.98 10.90 10.26 10.52 10.16 10.35 10.18 10.04 
1 21.96 16.17 15.74 16.31 17.40 19.07 20.43 22.29 23.98 25.45 26.92 28.42 
2 22.91 18.08 18.54 19.91 21.90 24.18 26.64 29.06 31.50 33.53 35.62 38.58 
3 23.86 19.67 19.91 21.91 24.59 27.62 30.33 32.90 35.74 38.43 41.52 44.13 
4 24.30 20.73 21.52 23.51 26.71 29.68 32.96 36.00 40.19 42.83 45.45 48.65 
5 24.50 21.41 22.66 25.22 29.10 31.92 35.97 38.22 42.62 46.40 49.18 53.12 

RMSE 0.39 0.32 0.28 0.26 0.24 0.23 0.22 0.21 0.20 0.19 0.19 0.18 
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Consider a dramatic example to explain the properties of the proposed method. 
Assume that a first grade student, whose real ability is the sixth grade, learns and has a test 
in a web-based learning system once a day. Figure 1 illustrates the changes in the estimated 
ability computed from the proposed method in different weights. The black horizontal line 
at the sixth grade represents the student’s actual ability as the ground truth. The other curves 
depict the estimated abilities under the different weights: a red dotted line, n=1; a green 
solid line, n=3; a purple solid line, n=6; and a blue solid line, n=12. The mark labels on each 
line are the convergence points (the value is continuously four times smaller than thd = 
0.25). It is clear that the estimated abilities are converging as n decreases in size. Although 
these estimated abilities are estimated using few iterations when n=1, the red-dotted line 
drastically fluctuates after the convergence point. In other words, if the ability estimation 
only takes the current responses into consideration, instead of past performance, the 
variance of every estimated ability may be large. In this situation, question selection in a test 
using inaccurate ability estimation could result in confusion by the examinee. In contrast, 
the estimated error gradually decreases when n>1, even though the estimated abilities when 
n=1 take more time to estimate. In this situation, the students’ abilities were gradually 
updated and the difficulties of items incrementally increased. This is thus a trade-off 
problem between time and precision. 

Figure 1. The changes in the estimated ability computed from the proposed method for the 
different weights (n=1, n=3, n=6, n=12) 

4. Empirical Study 

4.1 Materials 

The measurement approach proposed in this study is implemented on a Web-based learning 
system developed by the AutoQuiz Project of the IWiLL learning platform [8]. It provides 
English language learners online English reading materials collected from up-to-date online 
news websites and multiple-choice tests and automatically generates related quiz material 
[9][10]. Each test was composed of ten vocabulary questions, five grammar questions, and 
three reading comprehension questions. A total of 2,425 items were automatically generated 
based on 72 reading materials. The grade level of the vocabulary and grammar questions are 
defined according to the semester of high school in which the correct answer is taught, while 
the difficulty of the reading comprehension questions are measured by a reading difficulty 
estimation [7]. In other words, the grade level in this experiment is defined from one to six, 
corresponding to the six semesters of senior high school. 
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4.2 Participants and Procedure 

The participants in this study were high school students in Taiwan, divided into two groups: 
a control group where ability is estimated only based on current responses, and an 
experimental group that incorporates the history record into the current ability estimation. 
30 students participated within the control group, while 47 students participated in the 
experimental group.  

The experiment was held from January 30th to March 4th, 2012. During the 
experiment, the subjects were asked to participate in twelve activities, consisting of reading 
an article and then taking a test. In each activity, the subjects in both groups received an 
up-to-date article and a series of quizzes automatically generated based on their abilities. In 
addition, there was a pre-test and post-test for evaluating their abilities as the ground truth. 
The variable r was set as 0.5 based on IRT, and the variable s defined as the percentage of 
correctly answered items. Furthermore, the parameter n=12 in the exponential weight of the 
experimental group was equal to the period of activity, because all test records were taken 
into consideration. 

4.3 Results 

To validate the accuracy of the proposed ability estimation, the subjects’ abilities in the two 
groups were estimated with twelve continuous activities. Table 2 reports the Pearson’s 
correlation coefficient between the estimated abilities (the estimated grade is rounded by the 
estimated score) and the post-test scores among the three quiz types. All of the measures are 
significantly positively correlated. The results in the experimental group ranged from 0.44
to 0.69, while ones in the control group ranged from 0.47 to 0.54. Most of the correlation 
values in the experimental group are higher than the values in the control group; this 
suggests that estimating ability with the history record leads to a clearer relationship 
between the estimated ability and the ground truth.  

Table 2. The correlation result between the estimated ability and the post-test in the control 
group and the experimental group 

vocabulary grammar reading comprehension 
score grade score grade score grade 

Control group 0.47* 0.49** 0.54** 0.51** 0.54** 0.47* 
Experimental group 0.51*** 0.44** 0.55*** 0.55*** 0.69*** 0.65*** 

*p<0.05, **p<0.01, ***p<0.001 

Comparing the post-test score in each estimated ability (grade) is another way to 
assess the accuracy of the proposed ability estimation. If the estimated abilities are accurate, 
the subject performance of each ability will differ from that of other abilities. Table 3 
presents the mean post-test score of the subjects of different estimated abilities between the 
control group and the experimental group. Intuitively, a subject estimated a higher ability 
should has higher post-test score than one estimated a lower ability. One-way Analysis of 
Variance revealed that there were differences in the estimated vocabulary ability (F=5.75, 
p=0.001), the estimated grammar ability (F=4.71, p=0.003) and the estimated reading 
comprehension ability (F=5.98, p<0.001) in the experimental group, while there were no 
statistical differences between the estimated vocabulary and grammar ability in the control 
group. Noticeably, although the estimated reading comprehension ability in the control 
group has a significant difference, the mean scores among every ability fluctuated. The 
bolded values in Table 3 are unreasonable, because the averaged scores of the higher 
estimated abilities (grade 2, grade 4 and grade 5) in the control group were lower than ones 
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of the lower estimated abilities (grade 1 and grade 3). Though there was an unreasonable 
value for grade 6 of the estimated vocabulary ability in the experimental group, this is likely 
because only two students were assigned to grade 6. This sample size is likely 
unrepresentative. Moreover, in the experimental group, a Bonferroni post hoc test indicated 
that the performance of the estimated ability 1 and 2 were significantly different from the 
estimated ability 5 and 6. This indicates that the proposed ability estimation can effectively 
distinguish higher ability examinees from lower ones. 

Table 3. The mean post-test score of the subjects in different estimated ability groups 
between both groups and the result of ANOVA 

Estimated  
ability 

Control group Experimental group 
vocabulary grammar reading vocabulary grammar reading 

1 - 37.50 46.80 - - 37.67 
2 48.33 47.00 40.00 23.00 34.33 46.63 
3 38.00 51.40 52.57 52.86 52.80 53.50 
4 54.40 41.40 41.00 62.33 54.94 64.50 
5 61.22 62.83 32.67 69.71 66.81 66.90 
6 65.83 65.56 70.18 57.67 72.00 78.00 

F score 2.67 2.54 6.12*** 5.75*** 4.71** 5.98*** 
**p<0.01, ***p<0.001 

To further understand the impact of employing the proposed ability estimation on 
learners, we investigated the performance between the control group and the experimental 
group. In keeping with the previous results, the estimated subjects’ abilities in the 
experimental group were more accurate than those in the control group. We assume that 
appropriate instructional scaffolding could help students advance their learning, when 
effectively identifying their abilities. Table 4 presents the descriptive statistic and results of 
a T-test between the pretest and post-test. The results of the independent T-test (p=0.92 in 
the pre-test and p=0.51 in the post-test) showed no significant effect on the post-test 
between the experimental group and the control group. It is noticeable that the average score 
of the experimental group in the pretest was lower than the control group, but that of the 
experimental group in the post-test made great progress and surpassed the control group. 
Additionally, the paired sample T-test showed a significant effect of the pre-test and the 
post-test in the experimental group (p<0.001), while the performance of the control group 
had no statistically significant effect (p>0.05). This indicates that the subjects in the 
experimental group with an appropriate support can exceed the past themselves when 
successfully recognizing their learning status. 

Table 4. The results of the pretest and post-test between the control group and the 
experimental group 

Pretest Post-test Paired sample 
t-test mean std. mean std. 

Control group 53.23 19.35 56.70 17.99 1.57  
Experimental group 52.83 16.67 59.28 16.01 3.71*** 
independent t-test 0.20 0.66 

***p<0.001 
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5. Conclusion 

This work develops a statistical and interpretable method of estimated ability that captures 
the succession of learning over time in a Web-based test environment. Moreover, it provides 
an explainable interpretation of the statistical measurement based on Item Response Theory 
and the quantiles of acquisition distributions. The result from the simulation demonstrated 
that the estimated abilities obtained from the proposed method could successfully 
approximate the actual abilities of students, and estimated abilities can be steadily measured 
during long-term observation. This proposed approach was also implemented on a 
Web-based learning environment. The empirical results show that the correlation values 
incorporating this testing history were higher than the values that only consider test 
responses at the time of testing. Additionally, the pretest and post-test administered to the 
experimental group demonstrated significant student improvement. This paper presents 
preliminary results of a pilot experiment; future research will be further expanded to include 
long-term evaluation of the effectiveness of the proposed approach under changes in student 
learning. 
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